» » Самодельные термометры. Простой электронный термометр

Самодельные термометры. Простой электронный термометр
Часто схемы собирают по остаточному принципу: что-то где-то завалялось - можно что-нибудь спаять. Это как раз тот случай, где ничего покупать не нужно, так как все детали термометра самые распространённые. Использование дешевых микросхем серии 176 (К176ЛА7 и К176ИЕ4), сделало возможным создание цифрового термометра, который при всей своей простоте обладает высокой повторяемостью и достаточной для бытовых целей точностью. Часто в последнее время ставят цифровые датчики температуры, но здесь им является обычный терморезистор с отрицательным ТКС и сопротивлением примерно 100кОм.

Цифровой термометр был задуман изначально как бытовой, домашний, который всю свою жизнь должен провисеть где-нибудь у окошка. Владельца термометра, прежде всего, волнует, какая температура на улице. Поэтому термометр может иметь внешний датчик температуры, расположенный, например, на внешней стороне рамы окна или только внутренний, если нужен контроль температуры в помещении.

Часто надо посмотреть на термометр, когда условия освещения плохие - например, посреди ночи. Поэтому ЖК-индикаторы, даже с подсветкой, не подходят. Лучшую читаемость в условиях недостаточного освещения имеют светодиодные индикаторы типа АЛС. Параметры термометра в смысле погрешности измерений всецело определяются настройкой градуирования по образцовому термометру. Схема термометра, вместе со всей страницей из журнала радиоконструктор приводится ниже:


Печатная плата конструкция корпуса термометра зависит от желаемого дизайна изделия, поэтому здесь не приводится. Фото моей платы приводится ниже.

Каждому приходилось во время болезни измерять себе температуру ртутным термометром. Эта процедура занимает обычно 5...7 минут. Если взрослые держат градусник спокойно, то за детьми приходится наблюдать, чтобы они его случайно не сломали.
Предлагаемое устройство позволяет за 3 секунды измерить темпера туру тела или предмета (например микросхемы) в диапазоне от 20 до 45°С с точностью не хуже 0,1°С. Этот диапазон при желании легко можно расширить или сдвинуть при изготовлении.

По сравнению с ртутным термометром электрический более удобен и безопасен, особенно когда приходится измерять температуру у маленьких детей или у животных.
В основу по строения схемы взят мостовой преобразователь. Изменение величины сопротивления термодатчика R8 приводит к разбалансу моста и появлению на стрелочном индикаторе РА1 тока, пропорционального температуре.

Особенностью данного прибора является применение в качестве датчика температуры терморезистора типа СТЗ-19 10 кОм, который обладает очень малой массой, за счет чего и удается получить высокую скорость измерения. Этот датчик удобно закрепить на конце пластмассовой трубки от шариковой авторучки и перевитыми между собой проводами длиной 1...0.6 м через разъем Х1 подключить к измерительному блоку. На разъеме от датчика между контактами 1 и 2 установлена перемычка, которая не позволит включить схему устройства, если не подключен термодатчик, что предохраняет измерительный прибор РА1 от повреждения. Питается схема от двух любых аккумуляторов или батареек с общим напряжением 2...3 В и потребляет от источника ток не более 5 мА.

Транзисторы VT1 и VT2 используются как низковольтные стабилитроны и могут быть заменены на КТ3102А, Б, В, Г.

Переменные резисторы, для удобства настройки, лучше применить многооборотные, типа СП5-2 или аналогичные.

Габариты устройства определяются размерами стрелочного индикатора РА1, и при использовании микроамперметра М4205 на ток 0...50 мкА они не превышают 85х65х60 мм


Топология печатной платы и размещение на ней элементов показаны на рисунке

Настройку прибора начинают с измерения сопротивления резистора R8 (желательно с высокой точностью) при фиксированной температуре 20°С. Для этих целей удобно воспользоваться промышленной термокамерой с автоматическим поддержанием заданной температуры, куда и помещают термодатчик . Возможны и другие способы получения температуры 20°С но надо учитывать, что от точности измерения сопротивления термодатчика при этой температуре зависит точность измерения прибора.

После измерения R8 из двух резисторов R6+R7 подбираем такой же номинал сопротивления и припаиваем их в схему.

После этого, установив движки резисторов R2 и R3 в среднее положение, включаем схему тумблером S1 и выполняем последовательно следующие операции:

а) установить переключатель 82 в положение КАЛИБРОВКА и резистором R2 вывести стрелку измерительного прибора в нулевое положение на шкале;

б) поместить датчик температуры в место с известной, постоянной температурой (в пределах желаемого измерительного диапазона);

в) установить переключатель S2 в положение ИЗМЕРЕНИЕ и резистором R3 установить стрелку прибора на значение шкалы, которое будет соответствовать измеренной величине;

Операции а), б) и в) необходимо повторить последовательно несколько раз, после чего настройку можно считать законченной.

В заключение хотелось бы отметить, что в настроенном приборе диа пазон измерения можно сдвинуть резистором R2 при переключении в режим КАЛИБРОВКА и устанавливая стрелку (ее положение будет соответствовать значению 20°С) на любое значение шкалы. После этого при переключении прибора в режим ИЗМЕРЕНИЕ шкала будет соответствующим образом сдвинута относительно положения стрелки в режиме КАЛИБРОВКА.

Прибор имеет большой запас по чувствительности, которая увеличивается с уменьшением сопротивления R3 (при первоначальной настройке). Можно сделать так, чтобы прибор улавливал температуру дыхания или же изменение температуры при циркуляции воздуха.

Схема термометра с цифровой индикацией

Цифровые термометры довольно широко представлены в магазинах. Это, как правило, автономные приборы с питанием от гальванических элементов и жидкокристаллическим индикатором. Датчиком температуры в таких устройствах чаще всего являются терморезисторы или специальные полупроводниковые датчики, выдающие двоичный код температуры по запросу управляющего микроконтроллера. Насколько точно такие термометры измеряют температуру во всём рабочем диапазоне определяется серьёзностью фирмы изготовителя, которая не всегда на высоте, что может иметь фатальные последствия, если, например, термометр используется для контроля температуры в инкубаторе. Повторить такую конструкцию затруднительно из-за отсутствия специфических элементов.
В радиотехнических журналах и интернете неоднократно публиковались схемы электронных термометров, в которых в качестве датчика температуры использовались полупроводниковые диоды или транзисторы. Если p-n переход запитать стабильным постоянным током, то падение напряжения на нём в достаточно широком диапазоне почти линейно зависит от температуры. Проблема в том, что для каждого экземпляра диода или транзистора эта зависимость своя, что затрудняет калибровку прибора, т.к. требуется реально помещать датчики в жидкости с точно известной температурой. При использовании обычных терморезисторов температурная зависимость становится ещё более непредсказуемой и погрешность показаний достигает неприемлемых значений. Выходом из этой неприятной ситуации является использование термометров сопротивления - широко распространённых средств автоматики.
Термометры сопротивления представляют собой бифилярно намотанную катушку из тонкого медного или платинового провода, размещённую в небольшом цилиндрическом корпусе (около Ф 4 х 20 мм), называемую чувствительным элементом. Для защиты от внешних повреждений и удобства подключения чувствительные элементы очень часто помещают в специальный корпус с боксом для подключения внешних проводников. Главное достоинство этих приборов - линейная нормированная (табличная) зависимость сопротивления от температуры, что позволяет легко производить замену датчиков и производить настройку цифровых термометров, используя только набор прецизионных резисторов, с сопротивлением, равным табличному значению сопротивления при выбранной температуре.
Погрешность измерения в диапазоне температур от -200 град.С до +200 град.С не превышает 0,5 град.С, и, главное, показания достоверны. Термометры сопротивления выпускают с разными температурными характеристиками, называемыми градуировкой. Наиболее распространены медные термометры сопротивления градуировок 50М и 100М, которые указывают на сопротивление чувствительного элемента при 0 град.С. Зависимость сопротивления датчиков от температуры можно узнать с помощью специальной программы. Выше приведённая схема как раз использует в качестве датчика медный термометр сопротивления градуировки 100М. В схеме можно применить абсолютно любые датчики с любой градуировкой, но необходимо будет подобрать номиналы элементов измерительного моста.
Термометр имеет светящиеся индикаторы и питается от любого сетевого адаптера или аккумулятора с выходным напряжением 12 В. На операционном усилителе DA2 и транзисторе VT1 собран узел получения искусственной средней точки, необходимой для работы аналого - цифрового преобразователя DA1, а на ОУ DA3 собран нормирующий преобразователь, выдающий напряжение -2,000 ... +2,000 В при изменении температуры датчика от -200 град.С до +200 град.С.

После изготовления устройства приступают к его настройке. Вначале подбором резисторов R3, R4 добиваются уровня напряжения на выводе 36 микросхемы DA1 равным 1,000В, контролируя его цифровым мультиметром. Вместо одного из резисторов можно использовать прецизионный проволочный резистор. Далее приступают к настройке нормирующего преобразователя. Вместо датчика температуры подключают прецизионный резистор сопротивлением 100,0 Ом и вращением подстроечного резистора R14 добиваются нулевых показаний цифрового индикатора. Чтобы регулировка удалась, все резисторы нормирующего преобразователя должны быть прецизионными или тщательно подобранными с помощью цифрового мультиметра - отклонение сопротивлений парных резисторов (с одинаковым на схеме сопротивлением) не должно превышать 1%.
Если настройка нуля прошла успешно, вместо датчика подключают прецизионный резистор с сопротивлением, равным одному из значений сопротивления датчика при выбранной температуре. Подбором резистора R7 и подстроечного R6 добиваются показания этой температуры на цифровом индикаторе прибора. Если датчик температуры будет соединяться с цифровым термометром с помощью кабеля длиной несколько метров, настройку нуля и диапазона необходимо проводить при подключенном кабеле.

Прецизионные резисторы подключаются на конце кабеля, в месте установки термометра сопротивления. При изменении длины кабеля настройку прибора повторяют - достаточно иметь два прецизионных резистора: 100,0 Ом и любой 110 .. 130 Ом, значение которого точно вымеряют и по градуировочной таблице определяют, какой температуре соответствует это сопротивление, чтобы по этому значению настроить показания. После настройки индикации выбранного значения температуры проверяют уход "0", при необходимости его опять подстраивают резистором R14, и снова проверяют соответствие показаний индикатора выбранному значению и т.д.

Как сделать простой цифровой измеритель температуры (10+)

Простой цифровой термометр своими руками

Мне потребовалось быстро изготовить простой измеритель температуры из подручных деталей. Схема получилась простой, доступной для повторения людьми с базовыми навыками в области электроники.

Схема электронного цифрового измерителя температуры

Конструкция представляет собой классический мост. Одно плечо моста выполнено на резисторе и датчике температуры с линейной зависимостью напряжения от температуры. Второе плечо - делитель напряжения

Схема питается от стабилизированного источника напряжения 9V. Внимание! Нельзя использовать источники, которые дают на выходе высокочастотные пульсации. Измерительный прибор не будет работать в таких условиях. Можно питать от батарейки "Крона", но тогда, по мере ее разряда и снижения напряжения на ней, потребуется подстройка

Детали

Резистор R1 - маломощный 6.8 кОм.

Резистор R2 - маломощный 30 кОм.

Резистор R3 - маломощный подстроечный 5 кОм.

Измерительный прибор A - обычный цифровой тестер.

Принцип работы, наладка, калибровка

Напряжение на датчике VD1 прямопропорционально температуре. Причем изменение температуры на 1 ГрЦ приводит к изменению напряжения на 10 мВ, что очень удобно, так как упрощает пересчет показаний прибора в значение температуры.

Наладку проводим так. Измеряем температуру окружающей среды обычным термометром. Включаем тестер, переводим его в режим измерения напряжения с лимитом 2000 мВ. С помощью подстроечного резистора R3 добиваемся на индикаторе показаний, равных текущей температуре, умноженной на 10. То есть, если у нас в комнате 21 градус, то на индикаторе должно быть 210 мВ.

Все, теперь можно проводить измерения. Показания индикатора нужно делить на 10. Если на индикаторе, например, -120, значит, температура -12 ГрЦ.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые.

Который имеет очень малые размеры. Здесь мы рассмотрим создание простого цифрового термометра с использованием в качестве температурного датчика - специальный цифровой датчик температуры от фирмы DАLLAS, а точнее ds18b20 и микроконтроллером ATtiny2313. Характеристики предложенного цифрового термометра: пределы измерения от -55 до +125*С; точность измерение от 0,1 до 0,5*С.

Фотография датчика ds18b20:

Работает термометр следующим образом: микроонтроллер подает запрос на поиск и запись адресов датчиков ds18b20, подключенных к линии контроллера по интерфейсу 1Wire. Далее производится чтение температуры с датчиков, которые были найдены, после этого выводит температуру на 3-х символьный LED, хотя при небольшой модификации прошивки можно подключать и 4-х символьный LED. Тогда температура будет выводится с точность до десятичных долей градуса. Опрос датчика составляет где-то 750мс. Схема проста и в печатной плате не нуждается, хотя кому больше нравится на печатной плате - можно нарисовать. Я контроллер ATtiny2313 ставил сзади LED индикатора и всё соединял проводами.

Принципиальная схема цифрового термометра на ATtiny2313:


Перейдём к настройки фьюзов микроконтроллера. Для работы с протоколом 1Wire, частота внутреннего генератора МК должна быть не меньше 4мгц. Вот скриншот фьюзов которые надо выставить при прошивке в Code Vision AVR:


На форуме, есть прошивки для индикаторов с общим катодом и общим анодом. Так же все прошивки умеют работать с 8 х датчиками ds18b20. Ещё есть прошивка, которая меряет температуру с точностью до десятичных значений, при этом необходим 4х символьный , анод лишнего сегмента цепляют к PORTD.3 , а запятую цепляют на PORTB.7.

Измеритель предназначен для измерения температуры воздуха , а если защитить датчик, то и любой другой среды в диапазоне -50..+50°С.

Схема термометра представляет собой мост постоянного тока, в одно плечо которого включен терморезистор, а индикатором служит головка микроамперметра (0...50 мкА). Каждое деление на шкале соответствует 1°С. После уравновешивания моста напряжение в измерительной диагонали равно нулю. Разбаланс моста вызывает появление напряжения положительной или отрицательной полярности - в зависимости от направления разбаланса.
Если менять полярность питающего напряжения при разбалансе, полярность напряжения в измерительной диагонали моста будет одинакова при измерении положительных и отрицательных температур, и можно использовать обычную головку (с нулевым делением слева, а не в середине шкалы).
Изменение полярности осуществляется тумблером SA1, который имеет два положения: "+" и "-", которые можно назвать "Зима" и "Лето".

Измерения производятся при нажатии кнопки SB1. I Детали. Терморезистор R1 - 1 ММТ-13Б, ММТ-12; резисторы R2, ; R3, R5. R6 - МПТ-0.5 или С2-29 с допуском 5%; R4. R7 - СП5-15, СП5-14 или СП5-2. Тумблер SA1 - МТ-3, кнопка SB1 - КМ-1. Измерительная головка РА1 - МЭ06 (ln=50 мкА, Rp=22l3 Ом). Ее можно заменить на М24 или М906 с нулем посередине шкалы, тогда тумблер SA1 не нужен. Для питания прибора используется один элемент типа °D". Такой элемент служит 2...3 года. Можно взять и элементы типа *АА" или аккумуляторы таких же размеров.

Схема простого термометра

Детали измерителя располагаются на плате из одностороннего фольгированного стеклотекстолита размерами 125x110 мм, выполненной методом прорезания дорожек в фольге. Плата крепится к выводам головки, ее нижняя часть служит опорой измерителя. В верхней части платы устанавливается элемент питания, а на одной из боковых сторон - тумблер и кнопка.
Регулировка. Резисторы R4. R7 устанавливают в среднее положение. Терморезистор подключают проводом МГТФ необходимой длины (0,5.. .1,5 м) и помещают в стакан стающим льдом, через 5..10 минут нажимают кнопку SB1 "Измерение" и резистором R7 устанавливают "0°. Затем терморезистор опускают в пол литровую стеклянную банку, заполненную водой с температурой +60.+70°С. Температуру измеряют ртутным лабораторным термометром. Через 5... 10 мин. когда температура воды снизится до +40°С или +50°С. резистором R4 устанавливают это значение на шкале прибора. Терморезистор, измеряющий температуру наружного воздуха, надо размещать таким образом, чтобы исключить попадание на него солнечных лучей.

Литература
1. Андреев Ю.Н. и др. Резисторы: Справочник
2. Радио, 1999, №6, С.43.
3. Шульц Ю. 1000 понятий для практиков. С.130.

Ю.ПЛОТНИКОВ , г.Новосибирск.